[5]

1. The functions f(x) and g(x) are defined by $f(x) = \ln x$ and $g(x) = 2 + e^x$, for x > 0.

Find the exact value of x, given that fg(x) = 2x.

2. In an experiment, the temperature of a hot liquid is measured every minute. The difference between the temperature of the hot liquid and room temperature is D °C at time *t* minutes.

Fig. 8 shows the experimental data.

It is thought that the model $D = 70e^{-0.03t}$ might fit the data.

(a)	Write down the derivative of $e^{-0.03t}$.	[1]
(b)	Explain how you know that $70e^{-0.03t}$ is a decreasing function of t.	[1]
(a)	Coloulate the value of $70e^{-0.03t}$ when	

(c) Calculate the value of $70e^{-0.03t}$ when (i) t = 0, [1]

(ii)
$$t = 20.$$
 [1]

(d) Using your answers to parts (b) and (c), discuss how well the model $D = 70e^{-0.03t}$ fits the [3] data.

^{3.} In a certain region, the populations of grey squirrels, P_G and red squirrels P_R , at time *t* years are modelled by the equations:

$$P_{\rm G} = 10000(1 - e^{-kt})$$

 $P_{\rm B} = 20000e^{-kt}$

where $t \ge 0$ and k is a positive constant.

(a) (i) On the axes below, sketch the graphs of P_{G} and P_{H} on the same axes.

(ii) Give the equations of any asymptotes.

(b) What does the model predict about the long term population of

- grey squirrels
- red squirrels?

Grey squirrels and red squirrels compete for food and space. Grey squirrels are larger and more successful than red squirrels.

- (c) Comment on the validity of the model given by the equations, giving a reason for your answer. [1]
- (d) Show that, according to the model, the rate of decrease of the population of red squirrels is always double the rate of increase of the population of grey squirrels. [4]
- (e) When t = 3, the numbers of grey and red squirrels are equal. Find the value of k. [4]

[4]

[2]

4. (a) Sketch the curve $y = e^{2x}$.

[2]

[2]

- (b) Describe fully the transformation that maps the curve $y = e^x$ onto the curve $y = e^{2x}$. [2]
- (c) Find the equation of the tangent to $y = e^{2x}$ at the point where x = 3, giving your answer in the form [6]
 - $y = e^{a} (bx + c)$ where *a*, *b* and *c* are integers.

Determine the exact *x*-coordinate of the point where the curve meets the *x*-axis.

END OF QUESTION paper

Mark scheme

Question		ion	Answer/Indicative content	Marks	Part marks and guidance	
1			$fg(x) = ln(2 + e^{x})$	M1	condone missing brackets	
			$\Rightarrow \ln(2 + e^x) = 2x$			
			$\Rightarrow 2 + e^x = e^{2x}$	A1		
			$\Rightarrow e^{2x} - e^x - 2 [= 0]$	M1	Rearranging into a quadratic in e ^x	may be implied from both correct roots
			$\Rightarrow (e^{x} - 2)(e^{x} + 1) = 0, e^{x} = 2, -1$	A1	obtaining roots 2, –1	-1 root may be inferred from factorising
						$x = \ln(-1)$ is A0
						Examiner's Comments
			$\Rightarrow e^x = 2, x = \ln 2$	A1	$x = \ln 2$ only, not from ww	Virtually all candidates formed the composite function in the correct order to obtain $fg(x) = ln(2 + e^x)$. A few then simplified this to $ln2$ + <i>x</i> and therefore made no further progress. Of those who did correctly proceed to 2 + e^x = e^{2x} a substantial
						e ^{2x} , a substantial minority then incorrectly took logs of each side to reach $ln2 + x = 2x$. Of those who correctly rearranged the equation into a quadratic in e ^x , nearly all then gained full marks, correctly rejecting the e ^x = -1 solution.
			Total	5		

			B1(AO1.2)		
2	а	-0.03e ^{-0.03t}			
			[1]		
	b	Decreasing function because $e^{-0.03t}$ is positive [for all values of t] so the gradient is negative.	E1(AO2.2a)	Explanation may include a sketch graph of the function 70e ^{-0.03<i>t</i>} but it must be clear that the graph is of the function and the answer	
			[1]	must clearly refer to the gradient of the function and not the trend in the data	
			B1(AO1.1)		
	С	A 70			
			[1]		
			B1(AO1.1)		
	С	B 38.[4168]	[1]		
	d	Data values decreasing so decreasing function is suitable	E1(AO3.5a) B1(AO3.5a) B1(AO3.5b)		

		At $t = 0$, calculated D = 70 and this matches the data At $t = 20$, data value is 40 which is not exact but close	[3]	
		Total	7	
3	а	A 10000	M1(AO1.1) M1(AO1.1)	P_{G} shape through O P_{R} shape through (0, 20000),
	а	B asymptote for $P_{\rm G} = 10\ 000$	A1(AO2.2a) A1(AO2.2a)	Or <i>p</i> = 10 000
		Asymptote for $P_{\rm R} = 0$	[4]	Or $p = 0$
	b	Red squirrels zero Grey 10 000	B1(AO3.4) B1(AO3.4) [2]	
	С	One relevant comment evaluating the validity of the model	B1(AO3.5a)	E.g. One of • Grey population increases as would be expected [since grey squirrels are larger and more successful] • Red population decreases as would be expected [since red squirrels

		[1]	have to compete with the larger grey squirrels for food] Number of squirrels tends to a limit as would be expected [since there is limited food and space] Would expect grey population to grow slower at first Would expect red population to fall slower at first
		M1(AO3.1b)	Attempts to differentiate either or both
d	$\frac{\mathrm{d}P_{\mathrm{G}}}{\mathrm{d}t} = 10\ 000 k\mathrm{e}^{-kt}$	A1(AO1.1)	
	$\frac{\mathrm{d}P_{\mathrm{R}}}{\mathrm{d}t} = -20\ 000k\mathrm{e}^{-kt}$	A1(AO1.1) E1(AO2.1)	
	$\int_{SO} \frac{\mathrm{d}P_{\mathrm{R}}}{\mathrm{d}t} = -2 \frac{\mathrm{d}P_{\mathrm{G}}}{\mathrm{d}t}$	[4]	Or in words

	e	$10\ 000\ (1 - e^{-3k}) = 20\ 000\ e^{-3k}$ $\Rightarrow 1 - e^{-3k} = 2\ e^{-3k}$ $\Rightarrow e^{-3k} = \frac{1}{3}$ $\Rightarrow -3k = \ln\left(\frac{1}{3}\right)$ $\Rightarrow k = -\frac{1}{3}\ln\left(\frac{1}{3}\right) = 0.366 \text{ or } \frac{1}{3}\ln 3$	M1(AO1.1a) A1(AO1.1) M1(AO1.1) A1cao(AO2.1) [4]	Taking natural logs of both
		Total	15	
4	a	4 3 2 1 -2 -1 -1 1 x	G1(AO 1.2) G1(AO 1.2) [2]	Correct shape with <i>x</i> - axis as asymptote (0, 1) clearly shown
	b	Stretch in the <i>x</i> -direction $\frac{1}{2}$ Stretch scale factor	B1(AO 1.1a) B1(AO 1.1a) [2]	'Stretch' must be seen at least once for any marks to be awarded, but the word needn't be repeated
	С	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}$	M1(AO 1.1a) A1(AO 1.1b) A1(AO 1.1a)	Allow for any ke^{2x}

		$x = 3, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{6}$	B1(AO 1.1a)	Correct 2e ^{2x}
		and $y = e^6$	M1(AO 1.1a)	
		Tangent is $y - e^6 = 2e^6 (x - 3)$	A1(AO 2.1)	
		$y = 2e^{6}x - 5e^{6}$ $y = e^{6}(2x - 5)$	[6]	Allow method if 403 or better used for e ⁶
				Must be in this form
		Total	10	
5		$\sqrt{1+\ln x} = 0 \Longrightarrow \ln x = -1$ $x = \frac{1}{e}$	M1(AO1.1a) A1(AO2.2a) [2]	oe but must be exact
		Total	0	
		IOTAI	2	