1. The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined by $\mathrm{f}(x)=\ln x$ and $\mathrm{g}(x)=2+\mathrm{e}^{x}$, for $x>0$.

Find the exact value of x, given that $f g(x)=2 x$.
2. In an experiment, the temperature of a hot liquid is measured every minute. The difference between the temperature of the hot liquid and room temperature is $D^{\circ} \mathrm{C}$ at time t minutes.

Fig. 8 shows the experimental data.

Fig. 8
It is thought that the model $D=70 \mathrm{e}^{-0.03 t}$ might fit the data.
(a) Write down the derivative of $\mathrm{e}^{-0.03 t}$.
(b) Explain how you know that $70 \mathrm{e}^{-0.03 t}$ is a decreasing function of t.
(c) Calculate the value of $70 \mathrm{e}^{-0.03 t}$ when
(i) $t=0$,
(ii) $t=20$.
(d) Using your answers to parts (b) and (c), discuss how well the model $D=70 \mathrm{e}^{-0.03 t}$ fits the [3] data.
3. In a certain region, the populations of grey squirrels, P_{G} and red squirrels P_{R}, at time t years are modelled by the equations:

$$
\begin{gathered}
P_{G}=10000\left(1-\mathrm{e}^{-\kappa t}\right) \\
P_{\mathrm{R}}=20000 \mathrm{e}^{-\kappa t}
\end{gathered}
$$

where $t \geq 0$ and k is a positive constant.
(a) (i) On the axes below, sketch the graphs of P_{G} and P_{R} on the same axes.

(ii) Give the equations of any asymptotes.
(b) What does the model predict about the long term population of

- grey squirrels
- red squirrels?

Grey squirrels and red squirrels compete for food and space. Grey squirrels are larger and more successful than red squirrels.
(c) Comment on the validity of the model given by the equations, giving a reason for your answer.
(d) Show that, according to the model, the rate of decrease of the population of red squirrels is always double the rate of increase of the population of grey squirrels.
(e) When $t=3$, the numbers of grey and red squirrels are equal. Find the value of k.
4.
(a) Sketch the curve $y=e^{2 x}$.
(b) Describe fully the transformation that maps the curve $y=\mathrm{e}^{x}$ onto the curve $y=\mathrm{e}^{2 x}$.
(c) Find the equation of the tangent to $y=\mathrm{e}^{2 x}$ at the point where $x=3$, giving your answer in the form $y=e^{a}(b x+c)$ where a, b and c are integers.
5. Fig. 3 shows the curve with equation $y=\sqrt{1+\ln x}$.

Fig. 3

Determine the exact x-coordinate of the point where the curve meets the x-axis.

Mark scheme

